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1 L? Estimates for The 0 Operator in Several Complex Vari-
ables (cont.)

1.1 Conditions for an operator to be surjective

We have an operator T : L?(,e %) — L%O 1)(9,6_‘”2), acting as 0, where Q C C" is
open and 1,2 € C°(Q) are real weights to be chosen. Also Ran(T) C F = {f €
L%OJ)(Q, e %2):0f =0}.

Lemma 1.1. Let T : Hy — Hs be linear, closed, and densely defined with Ran(T) C F,
where F is a closed subspace of Hy. Then Ran(T') = F if and only if there is a C > 0 such

that |||, < C|T*f|lm, for all f € F 0 D(T*).

Proof. ( = ): Consider the map T : D(T') — F, which are Banach spaces if D(T) is
equipped with the graph norm |[|ul|p(7) := [lul| + [|Tu||. T'is continuous and surjective, so
T is open by the open mapping theorem. Then T'({u : [|ullp¢ry < 1}) 2 {f € F: ||f|| < ¢}
for some € > 0. We get that there is a C' > 0 such that for all g € F, there is a u € D(T)
such that Tu = f and ||u||g, < C||g||m,- When f € D(T*)NF,

|9y | = 1Ty, [ = (T fyw) | < CIT flla |9 -

We get that ||, < |7/l

( <= ): Assume that the bound holds for all f € FND(T*). We have Ran(T) C F. Let
g € F. We claim that the antilinear map L(T™ f) = (f, g) g, (for f € D(T™)) is well-defined
and satisfies |L(T* )| < Cllgll || T* 1,

We can write f = fi + fo, where fi € F, and fo € F* for any f € D(T*). Now
(fa,Tu) =0 for any u € D(T), so fo € D(T™*); in particular, T*f, = 0. So f1 € FND(T*),
and we get

LT )| = (g, £1) < Cllgllml T*f1 .

So we get the claim.



We get that the map L extends by continuity to Ran(7*) C H;. So there is a u €

Ran(7T*) such that L(T*f) = (u,T* f), for all f € D(T*). On the other hand, L(T*f) :=
(9, f) 1, 0 we get (T" f,u) = (f,g) for all f € D(T*). This implies that u € D((T*)*) =
D(T) and Tu = g. We also get that

lullz, = ILIF < Cligll s, -

1.2 Hormander’s idea and the density lemma

In our setting Hy = L?(Q, e~ %), Hy = L%OJ)(Q,e_“"?), T=0,and F={f € Hy:0f =0}.
So we want to show that

Iz < CIT" fllay,  f € FND(TT).
Introduce the space of 2-forms

Hy = Lf 5 (e %) = F = Fjpdzj Ndzy : Fii € LX(Q,e7%),
ik

and consider the closed, densely defined operator S : Hy — Hg which sends f — of =
> 0fNdzp =35, %fidfk A dzZp. We have F' = ker(S). Rather than trying to prove the
bound, we shall try to prove

111, < CUT fllE, + ISHIlE,),  YF € D(T") N D(S).

This looks stronger, but it has symmetry properties we can exploit.
The idea, due to Hérmander, is to choose the weights @1, @2, o3 so that the 1-forms with
coefficients in C§°(£2) are dense with respect to the graph norm f — || flla, + (|77 f| o, +

1551 -

Lemma 1.2 (Density lemma). Let (1) be a sequence in C5°(§2) such that 0 <n, <1 and
such that for any compact K CQ, n, =1 on K for all large v. Assume that

e fon P < Ce¥,  Vrj=12

Then G5 1)(9) is dense in D(T*) N D(S) with respect to the graph norm.

Remark 1.1. If Q = C", we can take 7, (z) = n(z/v) for some function n which is 1 near
0. Then we can take ¢ = @2 = 3.
Proof. Step 1: Suppose f € D(T*) N D(S) has compact support. Approximate by f * 1.,
where 1. (z) = e 2" (z/e) and ¥ € C5°.
Step 2: Given f € D(T*) N D(S), consider n, f € D(T*) N D(S). Then S(n;f) = Sf
in Hs. Then
L2
Smif) =nSf+ [S,n] —> Sf
—~— =
Ls203 =(0n;) f

by dominated convergence. O



We will review this last point in more detail next time.
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