Math 246C Lecture 26 Notes

Daniel Raban

May 29, 2019

1 L^2 Estimates for The $\overline{\partial}$ Operator in Several Complex Variables (cont.)

1.1 Conditions for an operator to be surjective

We have an operator $T: L^2(\Omega, e^{-\varphi_1}) \to L^2_{(0,1)}(\Omega, e^{-\varphi_2})$, acting as $\overline{\partial}$, where $\Omega \subseteq \mathbb{C}^n$ is open and $\varphi_1, \varphi_2 \in C^{\infty}(\Omega)$ are real weights to be chosen. Also $\operatorname{Ran}(T) \subseteq F = \{f \in L^2_{(0,1)}(\Omega, e^{-\varphi_2}) : \overline{\partial}f = 0\}.$

Lemma 1.1. Let $T : H_1 \to H_2$ be linear, closed, and densely defined with $\operatorname{Ran}(T) \subseteq F$, where F is a closed subspace of H_2 . Then $\operatorname{Ran}(T) = F$ if and only if there is a C > 0 such that $\|F\|_{H_2} \leq C \|T^*f\|_{H_1}$ for all $f \in F \cap D(T^*)$.

Proof. (\implies): Consider the map $T: D(T) \to F$, which are Banach spaces if D(T) is equipped with the graph norm $||u||_{D(T)} := ||u|| + ||Tu||$. T is continuous and surjective, so T is open by the open mapping theorem. Then $T(\{u: ||u||_{D(T)} < 1\}) \supseteq \{f \in F: ||f|| < \varepsilon\}$ for some $\varepsilon > 0$. We get that there is a C > 0 such that for all $g \in F$, there is a $u \in D(T)$ such that Tu = f and $||u||_{H_1} \le C||g||_{H_2}$. When $f \in D(T^*) \cap F$,

$$|\langle f,g \rangle_{H_2}| = |\langle f,Tu \rangle_{H_2}| = |\langle T^*f,u \rangle| \le C ||T^*f||_{H_1} ||g||_{H_2}.$$

We get that $||f||_{H_2} \le ||T^*f||_{H_1}$.

 (\Leftarrow) : Assume that the bound holds for all $f \in F \cap D(T^*)$. We have $\operatorname{Ran}(T) \subseteq F$. Let $g \in F$. We claim that the antilinear map $L(T^*f) = \langle f, g \rangle_{H_2}$ (for $f \in D(T^*)$) is well-defined and satisfies $|L(T^*f)| \leq C ||g||_{H_2} ||T^*f||_{H_1}$.

We can write $f = f_1 + f_2$, where $f_1 \in F$, and $f_2 \in F^{\perp}$ for any $f \in D(T^*)$. Now $\langle f_2, Tu \rangle = 0$ for any $u \in D(T)$, so $f_2 \in D(T^*)$; in particular, $T^*f_2 = 0$. So $f_1 \in F \cap D(T^*)$, and we get

$$|L(T^*f)| = \langle g, f_1 \rangle \le C ||g||_{H_2} ||\underbrace{T^*f_1}_{=T^*f} ||_{H_1}.$$

So we get the claim.

We get that the map L extends by continuity to $\overline{\operatorname{Ran}(T^*)} \subseteq H_1$. So there is a $u \in \overline{\operatorname{Ran}(T^*)}$ such that $L(T^*f) = \langle u, T^*f \rangle_{H_1}$ for all $f \in D(T^*)$. On the other hand, $L(T^*f) := \langle g, f \rangle_{H_2}$, so we get $\langle T^*f, u \rangle = \langle f, g \rangle$ for all $f \in D(T^*)$. This implies that $u \in D((T^*)^*) = D(T)$ and Tu = g. We also get that

$$||u||_{H_1} = ||L|| \le C ||g||_{H_2}.$$

1.2 Hörmander's idea and the density lemma

In our setting $H_1 = L^2(\Omega, e^{-\varphi_1})$, $H_2 = L^2_{(0,1)}(\Omega, e^{-\varphi_2})$, $T = \overline{\partial}$, and $F = \{f \in H_2 : \overline{\partial}f = 0\}$. So we want to show that

$$||f||_{H_2} \le C ||T^*f||_{H_1}, \quad f \in F \cap D(T^*).$$

Introduce the space of 2-forms

$$H_3 = L^2_{(0,2)}(\Omega, e^{-\varphi_3}) = F = \sum_{j,k} F_{j,k} \, d\overline{z}_j \wedge d\overline{z}_k : F_{j,k} \in L^2(\Omega, e^{-\varphi_3}),$$

and consider the closed, densely defined operator $S: H_2 \to H_3$ which sends $f \mapsto \overline{\partial} f = \sum_j \overline{\partial} f_j \wedge d\overline{z}_j = \sum_{j,k} \frac{\partial f_j}{\partial \overline{z}_k} d\overline{z}_k \wedge d\overline{z}_h$. We have $F = \ker(S)$. Rather than trying to prove the bound, we shall try to prove

$$\|f\|_{H_2}^2 \le C(\|T^*f\|_{H_1}^2 + \|Sf\|_{H_3}^2), \qquad \forall f \in D(T^*) \cap D(S).$$

This looks stronger, but it has symmetry properties we can exploit.

The idea, due to Hörmander, is to choose the weights $\varphi_1, \varphi_2, \varphi_3$ so that the 1-forms with coefficients in $C_0^{\infty}(\Omega)$ are dense with respect to the graph norm $f \mapsto ||f||_{H_2} + ||T^*f||_{H_1} + ||Sf||_{H_3}$.

Lemma 1.2 (Density lemma). Let (η_{ν}) be a sequence in $C_0^{\infty}(\Omega)$ such that $0 \leq \eta_{\nu} \leq 1$ and such that for any compact $K \subseteq \Omega$, $\eta_{\nu} = 1$ on K for all large ν . Assume that

$$e^{-\varphi_{j+1}}|\overline{\partial}\eta_{\nu}|^2 \le Ce^{-\varphi_j}, \qquad \forall \nu, j=1,2.$$

Then $C_{0,(0,1)}^{\infty}(\Omega)$ is dense in $D(T^*) \cap D(S)$ with respect to the graph norm.

Remark 1.1. If $\Omega = \mathbb{C}^n$, we can take $\eta_{\nu}(z) = \eta(z/\nu)$ for some function η which is 1 near 0. Then we can take $\varphi_1 = \varphi_2 = \varphi_3$.

Proof. Step 1: Suppose $f \in D(T^*) \cap D(S)$ has compact support. Approximate by $f * \psi_{\varepsilon}$, where $\psi_{\varepsilon}(z) = \varepsilon^{-2n} \psi(z/\varepsilon)$ and $\psi \in C_0^{\infty}$.

Step 2: Given $f \in D(T^*) \cap D(S)$, consider $\eta_{\nu} f \in D(T^*) \cap D(S)$. Then $S(\eta_j f) \to Sf$ in H_3 . Then

$$S(\eta_j f) = \underbrace{\eta_j Sf}_{L^2_{\varphi_3}} + \underbrace{[S, \eta_j]}_{=(\overline{\partial}\eta_j)f} \xrightarrow{L^2_{\varphi_3}} Sf$$

by dominated convergence.

We will review this last point in more detail next time.